Loose Primary School Cracking Calculations Session 1
 Addition and Subtraction

Information Session For Parents

17.6.2016

Welcome

Miss J Whitlock - Maths Leader

Session aims:

- To gain an insight into how addition and subtraction is taught from Year R to Year 6 in school.
- To give ideas for supporting maths at home making it fun!

Addition and Subtraction

The national curriculum for mathematics aims to ensure that all pupils:

- become fluent through varied and frequent practice with increasingly complex problems over time
- can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

What method would you use?

$17+23=$
$349+278=$
$1998+567=$
$185-35=$
$2005-1997=$
$3485-2876=$

Mental and written strategies

As pupils progress through the school it is vital that we develop their mental strategies as well as their ability to record using a written method.
Strategies for teaching mental addition include:

- Putting the largest number first:
$5+36$ is the same as $36+5$. Start at 36 and count on in ones
$30+60$ is the same as $60+30$. Start at 60 and count on in tens

```
- Partitioning:
14+25= (10+4)+(20+5)
(10 + 20) = 30
```

$(4+5)=9$
The answer is 39

- Compensation:
$17+9=17+10-1=26$
$26+11=26+10+1=37$
- Doubles or near doubles:
$8+8=16$
so $8+9=8+8+1=17$
- Bridging through 10, 20, etc...
$8+7=(8+2)+5$
$10+5=15$
$15+9=(15+5)+4$
$20+4=24$

Loose
Primary School

Year R

In their first year at Loose, pupils will develop their awareness of number.
By the end of the year, the majority of pupils will be able to:

- Recognise and order numbers to 20 , as well as identify one more or one less than any number up to 10 .
- add and subtract two single-digit numbers and count on or back to find the answer using practical equipment for support.

Year R - Addition

Maths for young children should be meaningful. Where possible, concepts should be taught in the context of real life.

Year R - Subtraction

Maths for voung children should be meaningful. Where possible, concepts should be taught in the context of real life.
 representations.

Years 1 and 2

The principal focus of mathematics teaching in Key Stage 1 is to ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value.
By the end of year 2, pupils should know the number bonds to 20 and be precise in using and understanding place value. An emphasis on practice at this early stage will aid fluency.

Years 3 to 6

- The principal focus of mathematics teaching in lower Key Stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value.
- Once they reach upper Key Stage 2, pupils should develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation. With this foundation in arithmetic, pupils are introduced to the language of algebra as a means for solving a variety of problems.

Addition

Progression in written methods

Year 4	Year 5	Year 6
Missing number/digit problems: Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Written methods (progressing to 4-digits) Expanded column addition modelled with place value counters, progressing to calculations with 4digit numbers. Compact written method Extend to numbers with at least four digits. Children should be able to make the choice of reverting to expanded methods if experiencing any difficulty. Extend to up to two places of decimals (same number of decimals places) and adding several numbers (with different numbers of digits). $\begin{array}{r} 72.8 \\ +54.6 \\ \hline 127.4 \end{array}$	Missing number/digit problems: Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Children should practise with increasingly large numbers to aid fluency e.g. $12462+2300=14762$ Written methods (progressing to more than 4-digits) As year 4, progressing when understanding of the expanded method is secure, children will move on to the formal columnar method for whole numbers and decimal numbers as an efficient written algorithm. $\begin{array}{r} 172.83 \\ +\quad 54.68 \\ \hline 227.51 \\ \hline 111 \end{array}$ Place value counters can be used alongside the columnar method to develop understanding of addition with decimal numbers.	Missing number/digit problems: Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Written methods As year 5, progressing to larger numbers, aiming for both conceptual understanding and procedura fluency with columnar method to be secured. Continue calculating with decimals, including those with different numbers of decimal places Problem Solving Teachers should ensure that pupils have the opportunity to apply their knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen their understanding.

Subtraction

Progression in written methods

Understand subtraction as finding the difference:

5 Pencils

The above model would be introduced with concrete objects which children can move (including cards with pictures) before progressing to pictorial representation.
The use of other images is also valuable for modelling subtraction e.g. Numicon, bundles of straws, Dienes apparatus, multi-link cubes, bead strings

Missing number problems e.g. $52-8=\square ; \square-20=25 ; 22=\square-$ $21 ; 6+\square+3=11$
It is valuable to use a range of representations (also see Y1). Continue to use number lines to model take-away and difference. E.g.

The link between the two may be supported by an image like this, with 47 being taken away from 72 , leaving the difference, which is 25 .

The bar model should continue to be used, as well as images in the context of measures.

Towards written methods

Recording addition and subtraction in expanded columns can support understanding of the quantity aspect of place value and prepare for efficient written methods with larger numbers. The numbers may be represented with Dienes apparatus. E.g. 75-42

Missing number problems e.g. $\square=43-27$; 145-ם=
138; $274-30=\square ; 245-\square=195 ; 532-200=\square$; 364-

$153=\square$

Mental methods should continue to develop,
supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving (see Y1 and Y2). Children should make choices about whether to use complementary addition or counting back, depending on the numbers involved.

Written methods (progressing to 3-digits)

Introduce expanded column subtraction with no decomposition, modelled with place value counters (Dienes could be used for those who need a less abstract representation)

For some children this will lead to exchanging, modelled using place value counters (or Dienes).

A number line and expanded column method may be compared next to each other.

Some children may begin to use a formal columnar algorithm, initially introduced alongside the expanded method. The formal method should be seen as a more streamlined version of the expanded method, not a new method.

Mental methods - Addition

Addition		
Year 1	Year 2	Year 3
Mental Strategies (addition and subtraction) Children should experience regular counting on and back from different numbers in 15 and in multiples of 2,5 and 10. Children should memorise and reason with number bonds for numbers to 20 , experiencing the $=$ sign in different positions. They should see addition and subtraction as related operations. E.g. $7+3=10$ is related to $10-3=7$, understanding of which could be supported by an image like this. Use bundles of straws and Dienes to model partitioning teen numbers intotens and ones and develop understanding of place value. Children have opportunities to explore partitioning numbers in different ways. $\text { e.g. } 7=6+1,7=5+2,7=4+3=$ Children should begin to understand addition as combining groups and counting on. Vocabulary Addition, add, forwards, put together, more than, total, altogether, distance between, difference between, equals $=$ same as, most, pattern, odd, even, digit, counting on.	Mental Strategies Children should count regularly, on and back, in steps of 2,3,5 and 10 . Counting fonvards in tens from any number should lead to adding multiples of 10 . Number lines should continue to be an important image to support mathematical thinking, for example to model how to add 9 by adding 10 and adjusting. -1 Children should practise addition to 20 to become increasingly fluent. They should use the facts they know to derive others, e.gusing $7+3=10$ to find $17+3=20,70+30=100$ They should use concrete objects such as bead strings and number lines to explore missing numbers $-45+=50$. As well as number lines, 100 squares could be used to explore patterns in calculations such as $74+11,77+9$ encouraging children to think about 'What do you notice?' where partitioning or adjusting is used. Children should learn to check their calculations, by using the inverse. They should continue to see addition as both combining groups and counting on. They should use Dienes to model partitioning into tens and ones and learn to partition numbers in different ways e.g. $23=$ $20+3=10+13$. Vocabulary +, add, addition, more, plus, make, sum, total, altogether, how many more to make...? how many more is... than...? how much more is...? $=$, equals, sign, is the same as, Tens, ones, partition Near multiple of 10, tens boundary, More than, one more, two more...ten more... one hundred more	Mental Strategies Children should continue to count regularly, on and back, now including multiples of $4,8,50$, and 100 , and steps of $1 / 10$. The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged. This will help to develop children's understanding of working mentally. Children should continue to partition numbers in different ways. They should be encouraged to choose the mental strategies which are most efficient for the numbers involved, e.g. Add the nearest multiple of 10 , then adjust such as $63+29$ is the same as $63+30-1$; counting on by partitioning the second number only such as $72+31=72+30+1=102+1=103$ Manipulatives can be used to support mental imagery and conceptualunderstanding. Children need to be shown how these images are related eg. What's the same? What's different? (1) (1) (1) (1) (1) Vocabulary Hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100 , inverse, rounding, column subtraction, exchange See also Y1 and Y2

Addition		
Year 4	Year 5	Year 6
Mental Strategies Children should continue to count regularly, on and back, now including multiples of $6,7,9,25$ and 1000, and steps of $1 / 100$. The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate. Children should continue to partition numbers in different ways. They should be encouraged to choose from a range of strategies: - Counting forwards and backwards: 124-47, count back 40 from 124, then 4 to 80 , then 3 to 77 - Reordering: $28+75,75+28$ (thinking of 28 as $25+3$) - Partitioning: counting on or back: $5.6+3.7,5.6+3+$ $0.7=8.6+0.7$ - Partitioning: bridging through multiples of 10: 6070 $4987,4987+13+1000+70$ - Partitioning: compensating $-138+69,138+70-1$ - Partitioning: using 'near' doubles $-160+170$ is double 150, then add 10 , then add 20 , or double 160 and add 10, or double 170 and subtract 10 - Partitioning: bridging through 60 to calculate a time interval - What was the time 33 minutes before 2.15 pm ? - Using known facts and place value to find related facts.	Mental Strategies Children should continue to count regularly, on and back, now including steps of powers of 10 . The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate. Children should continue to partition numbers in different ways. They should be encouraged to choose from a range of strategies: - Counting forwards and backwards in tenths and hundredths: $1.7+0.55$ - Reordering: $4.7+5.6-0.7,4.7-0.7+5.6=4+5.6$ - Partitioning: counting on or back $-540+280,540+200+$ 80 - Partitioning: bridging through multiples of 10 : - Partitioning: compensating: $5.7+3.9,5.7+4.0-0.1$ - Partitioning: using 'near' double: $2.5+2.6$ is double 2.5 and add 0.1 or double 2.6 and subtract 0.1 - Partitioning: bridging through 60 to calculate a time interval: It is 11.45 . How many hours and minutes is it to 15.20? - Using known facts and place value to find related facts.	Mental Strategies Consolidate previous years. Children should experiment with order of operations, investigating the effect of positioning the brackets in different places, e.g. $20-5 \times 3=5 ;(20-5) \times 3=45$

Mental methods - Subtraction

Mental Strategies
Children should experience regular counting on and back from different
numbers in 1s and in multiples of 2,5 and 10 .
Children should memorise and reason with number bonds for numbers
to 20, experiencing the = sign in different positions.
They should see addition and subtraction as related operations. E.g. $7+$
$3=10$ is related to $10-3=7$, understanding of which could be
supported by an image like this.
Use bundles of straws and Dienes to model partitioning teen numbers
into tens and ones.

Children should begin to understand subtraction as both taking away and finding the difference between, and should find small differences by counting on.

As well as number lines, 100 squares could be
 used to model calculations such as $74-11,77-$ 9 or $36-14$, where partitioning or adjusting are used. On the example above, 1 is in the bottom left corner so that 'up' equates to 'add'.

Children should learn to check their calculations, including by adding to check.

They should continue to see subtraction as both take away and finding the difference, and should find a small difference by counting up.

They should use Dienes to model partitioning into tens and ones and learn to partition numbers in different ways e.g. $23=20+3=10+13$.

Vocabulary

Subtraction, subtract, take away, difference, difference between, minus, tens, ones, partition, near multiple of 10 , tens boundary, less than, one less, two less... ten less... one hundred less, more, one more, two more... ten more... one hundred more

Mental Strategies

Children should continue to count regularly, on and back, now including multiples of $4,8,50$, and 100 , and steps of $1 / 10$.

The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged.

Children should continue to partition numbers in difference ways.
They should be encouraged to choose the mental strategies which are most efficient for the numbers involved, e.g. counting up (difference, or complementary addition) for 201 - 198; counting back (taking away / partition into tens and ones) for 201-12.

Calculators can usefully be introduced to encourage fluency by using them for games such as 'Zap' [e.g. Enter the number 567. Can you 'zap' the 6 digit and make the display say 507 by subtracting 1 number?]

The strategy of adjusting can be taken further, e.g. subtract 100 and add one back on to subtract 99. Subtract other near multiples of 10 using this strategy.

Vocabulary

Hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100, inverse, rounding, column subtraction, exchange

See also Y 1 and Y 2

Loose
Primary School

Subtraction

Year 4
Mental Strategies
Children should continue to count regularly, on and back,

The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate. Children should continue to partition numbers in different ways.

They should be encouraged to choose from a range of strategies:

- Counting forwards and backwards: 124-47, count back 40 from 124 , then 4 to 80 , then 3 to 77
- Reordering: $28+75,75+28$ (thinking of 28 as $25+3$)
- Partitioning: counting on or back: 5.6 +3.7,5.6+3+ $0.7=8.6+0.7$
- Partitioning: bridging through multiples of 10: 6070 $4987,4987+13+1000+70$
- Partitioning: compensating $-138+69,138+70-1$
- Partitioning: using 'near' doubles $-160+170$ is double 150, then add 10 , then add 20 , or double 160 and add 10 , or double 170 and subtract 10
- Partitioning: bridging through 60 to calculate a time interval - What was the time 33 minutes before 2.15 pm ?
- Using known facts and place value to find related facts.
Vocabulary
add, addition, sum, more, plus, increase, sum, total, altogether, double, near double, how many more to make..? how much more? ones boundary, tens boundary, hundreds boundary, thousands boundary, tenths boundary, hundredths boundary, inverse, how many

Mental Strategies

Children should continue to count regularly, on and back, now including steps of powers of 10 .

The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate.

Children should continue to partition numbers in different ways.

They should be encouraged to choose from a range of strategies:

- Counting forwards and backwards in tenths and hundredths: $1.7+0.55$
- Reordering: $4.7+5.6-0.7,4.7-0.7+5.6=4+5.6$
- Partitioning: counting on or back -540 + 280, $540+200+$ 80
- Partitioning: bridging through multiples of 10 :
- Partitioning: compensating: $5.7+3.9,5.7+4.0-0.1$
- Partitioning: using 'near' double: $2.5+2.6$ is double 2.5 and add 0.1 or double 2.6 and subtract 0.1
- Partitioning: bridging through 60 to calculate a time interval: It is 11.45 . How many hours and minutes is it to 15.20?
- Using known facts and place value to find related facts.

Vocabulary

tens of thousands boundary,
Also see previous years

Year 6

Mental Strategies

Consolidate previous years.

Children should experiment with order of operations, investigating the effect of positioning the brackets in different places, e.g. $20-5 \times 3=5 ;(20-5) \times 3=45$

Vocabulary

See previous years

How can you support at home?

The best thing that parents and carers can do for children is to have a positive attitude towards maths.
Take an interest in their learning and encourage them to be independent learners.
There is lots more helpful information and ideas for activities to play at home on our school website.

Any Questions?

